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Purpose. To study the effect of change in the shape factor of real
crystals on their dissolution behavior using a potassium dichromate
crystal as a model for particulates in general.

Methods. A model geometry (parallelepiped) has been suggested for
a dissolving particle. Single crystals of potassium dichromate which
are monoclinic prisms were grown individually from supersaturated
solutions at 40°C. Dissolution studies were carried out on five such
crystals in 0.1N H,SO, at 25°C and a stirrer speed of 50+1 rpm. The
five crystals had different degrees of non-isometricity. Initial dimen-
sions of the crystals were measured using image analysis tech-
niques. The shape factor of the dissolving crystal as a function of
time was obtained indirectly from the dissolution data.

Results. The shape factor of a single crystal changed significantly
after about 50% dissolution. The nature of this change depended on
the degree of non-isometricity of the crystal. The change in shape
factor of the dissolving crystal was accounted for in the Hixson-
Crowell cube root law, and a modified form of the cube root equa-
tion was developed. This equation for dissolution explained the ob-
served upward curvature in the cube root law plot.

Conclusions. The shape factor for any non-isometric particle cannot
be considered to be constant over the dissolution event, as is com-
monly assumed. This change has an appreciable effect on the dis-
solution behavior of crystals. This study is particularly of signifi-
cance for elongated shapes like needles and platelets. By the meth-
odology described here, it was possible to determine the initial shape
factor of the crystal and the intrinsic dissolution rate constant.

KEY WORDS: single crystal dissolution; Hixson Crowell cube root
law; shape factor; dissolution model; particle shape-parallelepiped;
potassium dichromate.

INTRODUCTION

The subject of dissolution of particulates was, for many
years, a main topic of pharmaceutical research. Once most
of the practical problems (dissolution apparatuses) were
solved, the theoretical aspects were abandoned as having
been solved. However there are certain aspects of dissolu-
tion which are of interest from a preformulation standpoint,
and the article to follow will deal with one of them, viz.
particle shapes (shape factors).

The introductory statement is not meant to imply that
no theoretical work has been done of late, and some recent
articles in this area will be referred to in the following. In
dissolution the governing equation is either the Noyes-
Whitney equation (1) or the Levich equation (2). The former
is of importance in the writing to follow and is stated as:
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where A is surface area (cm?), k is intrinsic dissolution rate
constant (cm/sec), S is solubility, m is mass of the undis-
solved particle, t is time and C is concentration at time t.

Under sink conditions C is sufficiently small so that S —
C = S and Eq. 1 becomes:

dm _ kAS 2
FTai @

Effect of Shape Factor

For any particle the relationship between area, volume,
and shape factor is

Wik

A=TIV# =T (?) 3)

where I is the shape factor, V is the volume of the particle,
and p is its density. For a single particle dissolution under
sink conditions Eqs. 2 and 3 yield

2
dm m\3
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If there are N spherical particles of the same radius, then the
mass at time t is Nm and initially is M, = Nm,, where the
subscript refers to initial conditions. If these relations are
introduced into Eq. 4 then

2
dM M\3
— = —k['NI3 (—)3 S (5)
dt 1] .

Dividing through by M??, integrating and imposing initial
conditions then yields:
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is the so-called cube root dissolution rate constant. Eq. 6 is
the mathematical statement of the Hixson Crowell cube root
law for a monodisperse multiparticulate system (3). The
cube root law plot is expected to be linear. However curva-
tures in such plots are not uncommon (4, 5); the extent of
deviations from linearity depends on the validity of the sev-
eral assumptions made in the derivation of the cube root law.
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In Eq. 7 T is assumed to be constant. OQur objective is to
decipher the contribution of the changing shape factor of a
real crystal to its dissolution behavior.

The above refers to a monodisperse powder consisting
of N particles of initial weight mg and if polydisperse powder
dissolution is studied, the sum of the fractions can be studied
and, for instance Brooke (6) and Carstensen and Musa (7)
have studied this situation for spheres (where I' = w'36%3),

Lai and Carstensen (4) studied the effect for isotropi-
cally dissolving oxalic acid in order to establish the effect of
shape factor on cube root dissolution behavior. In this case
non-isotropic shapes were simulated by cylindrical tablets.
The shape factor of the dissolving cylinder was calculated
from the dissolution data at every time point. They observed
that T changed significantly after about 50% of total disso-
lution time. Also, they could show by graphical integration
that as the degree of non-isometricity of the cylinder in-
creased, this ‘“‘cut-off”’ time shifted to a lower value. It is
only when a particle is isometric (i.e. when I’ is independent
of dimension) that I" is constant. The goal of the present
work is to study this concept for a real crystal, and to de-
velop a dissolution equation that takes into account its
changing shape factor.

Lu et al. (8) have extended the concept proposed by Lai
and Carstensen (4), and have shown that the cylindrical
model yields a better fit of dissolution data for hydrocorti-
sone particles than a sphere as a model for the same. How-
ever, in their paper there was no account of changing shape
factor as described by Lai and Carstensen (4).

Pederson and Brown (9) carried out a systematic study
on the dissolution of a 60-85 mesh fraction of tolbutamide in
a flow through dissolution apparatus by using a time-scaling
approach. They too have assumed the shape factor to be
constant. Understandably so, they made this simplification
because their aim was to assess the three models for disso-
lution viz., the cube root law model (3), the square root law
model (10), and the squared cube root law model (11).

It is, however, not only the effect of the shape factor
which is of importance. The intrinsic dissolution rate con-
stant, k, is assumed to be a constant for the substance. In
this discussion we do not intend to address this issue and in
the derivation to follow, isotropicity is assumed. Much dis-
solution work has been done with this assumption, with spe-
cific reference to the thorough work of Pedersen and Brown
(12), who derived dissolution equations for several crystal
systems. Our interest in this lies in studying the shape factor
as a function of dissolution time, and the derivation below is
based with this aim in mind. It should be pointed out that the
equations developed here are in agreement with those de-
rived by Pedersen and Brown (12), and that the shape factor
calculations are the ones that make our theme unique.

The Hixson-Crowell cube root law for powder dissolu-
tion makes the following assumptions: (i) the shape of dis-
solving particles is predominantly spherical and hence they
are isometric (ii) isotropicity (iii) independence of solubility
with respect to particle size, and (iv) sink conditions. Exten-
sive work has been done to study the dissolution kinetics of
polydisperse powders (5,6,7,11,13), and the extension of the
applicability of this law to non-sink conditions has been dem-
onstrated (14,15). Real particles are not spherical hence the
shape factor of such particles is a function of their dimen-
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sionality. As a particle dissolves its dimensions change and a
change in its shape factor occurs. Thus to take into consid-
eration the changing shape factor is to account for the non-
isometricity of the dissolving particle.

In the derivation to follow, a model for the dissolving
particle will be considered keeping in mind that many crys-
talline substances exist as needles, flakes, platelets, prisms,
etc. The simplest non-isometric geometry that can be per-
ceived along these lines is a parallelepiped. So the immediate
goal is to develop an expression for the shape factor of such
a particle as a function of dissolution time.

Most crystalline solids can be classified into seven dif-
ferent crystals systems depending on the respective dimen-
sions of the crystal faces and the angles between them. (16).
These seven crystal systems are: regular, tetragonal, or-
thorhombic, monoclinic, triclinic, trigonal, and hexagonal.
The choice of potassium dichromate as the model compound
is justified in three respects: (i) It has a high aqueous solu-
bility therefore the assumption of sink conditions is valid, (ii)
1t is feasible to grow large crystals, and (iii) It has a prismatic
crystal habit and a triclinic pinacoidal crystal system, which
closely approximates a parallelepiped.

THEORY

Consider a parallelepiped of length 1, breadth b, and
height h as shown in Fig. 1. The area A and volume V of a
particle with such a geometry are given by the following
equations.

A = 2(Ib + bh + lh) ®)
V = Ibh )
Noyes-Whitney equation under sink conditions is:
dm _ kAS 10
a - (10
where the symbols carry their usual meaning.
Expressing mass in terms of volume, and density
m = pV
“ar - Pt
Substituting Eqgs. 8, and 11 in Eq. 10 gives:
dv
Pgr = —2kS(b + bh + lh) 12)

Since V is a composite function of 1, b, and h, the rate of
change of volume w.r.t. time can be written as

— lh
h 1

Fig. 1. Model for the dissolving particle-parallelepiped.
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Treating these as partial derivatives the following equa-
tion is obtained:

dv dl db dh
—d—t‘ = bh <a‘{) + lh (I) + 1b (a)

From Egs. 12 and 13

(13)

dl db dh 2kS
bh<g;)+lh<d—t)+lb<d—t)=—7[lb+bh+lh]
or
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where K is a constant.

L/dly 1/dby 1/dh) = K
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In this differential equation the variables are in the sep-
arate variable form. Hence it follows that,

o R
=R

dl db dh

This implies isotropic dissolution. These expressions
can be integrated to obtain relationships between the crystal
dimensions and time of dissolution. If 1;, b,, and h, are the
initial length, breadth and height of the crystal,

J;(l)dl= —Kfo‘dt,fb‘;db = —KJ::dt,

andﬁ:dh= —KJ;’dt

Then the following relationships are obtained:

b—1=Kt (14)
by — b = Kt 15)
ho — h = Kt (16)

Consider

hIE—Kt
0 ho| ~

u = (1 — h/hg) is defined as the ‘‘reduced time’’. However
since u is a dimensionless quantity, the labeling of the name
“reduced length’’ is also acceptable. It should be pointed out
that the definition of u is based on the smallest dimension of
the crystal.

It is obvious that just before dissolution starts h=h,,
and at the point when the crystal completely dissolves h=0.
Hence the domain of u is [0,1].
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Substituting for Kt in Eqgs. 14, 15, and 16:
1= l() - l.lh() (18)
b = by — uhy (19)
h = hy — uhgy (20)
Substituting for K in Eq. 17 we get,
2kS
u=\{—jt 2n
pho

In order to determine u, we consider the fraction of
amount undissolved (F=m/mg). F can be expressed as the
ratio of instantaneous volume of the dissolving particle to its
initial volume, density being constant:

_ Ibh (o —~ uhg)(by — uhg)hy — uhg)
lgbohg lbeho

Two shape ratios p and q are defined which are indica-
tive of the degree of non-isometricity of the crystals.

p=lqandq=k
by hy

F

Rearranging the above equation using these two ratios
gives the following result

-1 - L PR L
S P

This is a third degree equation in u. The criteria for
choosing the ‘‘correct’ root of the possible three is that it
should be a real number between 0 and 1. F can be obtained
from dissolution data which enables one to solve Eq. 22 for
u. From Eq. 21 a linear relationship between u and t should
result. Adequate linearity for a plot of u versus t has been
demonstrated by Lai and Carstensen for cylindrical tablets
of oxalic acid (4). The slope of such a plot gives the value of
the intrinsic dissolution rate constant if the solubility, density
and initial dimensions of the dissolving particle are known.

Our primary objective is to investigate the change in
shape factor of real crystals as a function of dissolution time.
Isotropicity and isometricity are some of the basic assump-
tions in the derivation of the Hixson-Crowell cube root law.
A cube, a sphere, and a right circular cylinder are some
examples of isometric geometries because their shape fac-
tors are independent of their dimensions. Real particles are
usually not isometric. The shape factor of any particle is
defined as

(22)

2
-3
' = AV
For the parallelipiped model
2

T = 2(b + bh + Ih)Ibh) ~

Inserting Eq. 18, 19, and 20 in the above equation yields
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(lo — uhg)(bp — uhg) + (bo — uho)
(hy — uhg) + (Iy — uhg)(hy ~ uhy)

o — uho)(bo — uho)(ho — uhg)l3

Rearranging this equation so as to write it in terms of the
shape ratios p and q,

r=2

-

1

3

[(q—U) %—U)]
r=2<":*

1—u

~ 1
_ N .
_ 2 3
“ ”@Ql [Q - u)l — W]
+ +
q-—u q
- —u
G-

Eq. 23 expresses the shape factor for the parallelepiped
geometry considered here, as a function of reduced time. Lai
and Carstensen (4) followed a similar approach for cylindri-
cal tablets with different radius to height ratios. They derived
an expression for shape factor in terms of the ratio of radius
of the cylinder to its height, and the reduced time. By graph-
ical integration they could show that for an isometric tablet
(ratio = 1) there was no change in the shape factor as a
function of reduced time. However, significant changes in
the shape factor were predicted as this ratio deviated from
unity. For a ratio of 2.75 for an actual tablet they observed
that I' changed significantly after 50% of the material had
dissolved. The intent in this study was to examine the change
in shape factor of real crystals by the approach spelt above.

(23)

MATERIALS AND METHODS

Potassium dichromate (EM Science, Gibbstown, New
Jersey) was used as supplied to grow single crystals for dis-
solution studies. Concentrated sulfuric acid 98% (Aldrich
Chemical Co., Milwaukee, Wisconsin) was used in prepara-
tion of the dissolution medium. Deionized water was ob-
tained by using a Barnstead PCS cartridge water filter sys-
tem (The Barnstead Co., Boston, Massachusetts). Dissolu-
tion studies were carried out in Distek Inc. model 2000
paddle dissolution apparatus (Distek Inc., New Brunswick,
New Jersey) at a stirrer speed of 50 + 1 rpm. 0.1N Sulfuric
acid served as the dissolution medium and all studies were
carried out at 25°C. The volume of dissolution medium was
varied according to the weight of individual crystal. The
range was 750 ml to 1000 m! so as to have a final dichromate
concentration of about 400 mcg/ml after complete dissolu-
tion. 5 ml aliquots were withdrawn at regular intervals with-
out replacement. The change in total volume of dissolution
medium after successive withdrawals was accounted for in
concentration computations. Samples were withdrawn until
the crystal dissolved completely. Potassium dichromate so-
lutions were analyzed at 457 nm using a Perkin Elmer 559A
UV/Vis spectrophotometer.

Potassium Dichromate Crystals

A saturated solution of potassium dichromate was pre-
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pared at 25°C. This solution was placed in a large porcelain
dish and was allowed to evaporate in a room whose temper-
ature was maintained at 25+1°C. Fine prismatic crystals
(length 2-3 mm) were obtained within 24 hours. These crys-
tals were further grown individually, by suspending them
with a thread in jacketed glass jars containing a supersatu-
rated solution (degree of supersaturation 1.05) of potassium
dichromate at 40°C(16). During crystal growth, the temper-
ature was maintained by circulating water at 40°C from a
thermostated water bath. Typically, it took about 24 hours
for the crystals to grow to a length of around 9 mm. The
crystals so grown retained their prismatic crystal habit. Fi-
nally, these crystals were dried under vacuum.

Solubility Studies

Excess potassium dichromate was suspended in 0.1N
sulfuric acid in stoppered vials. These were mounted on a
motor-driven rotating shaft assembly placed in a water bath,
and the temperature was controlled at 25°C by a thermostat.
Samples were withdrawn after 48 hours and were filtered
through Nylon 66 (0.2 microns) filters. The solutions were
analyzed spectrophotometrically after proper dilution.

Measurement of Crystal Dimensions

The length, breadth, and height of the crystals as de-
picted in Fig. 2 were measured by making use of the *‘object
measurement”” mode of an Image-1/AT image analysis and
data acquisition system. This image analysis system com-
prises of a Javelin Ultrachip™ CCD camera bearing a 55 mm
/2.8 Nikon lens which feeds digital information to a Trinitron
SONY® color video monitor (complete assembly was sup-
plied by Fryer Co. Inc., Huntley, Illinois). Data acquisition
and processing from the video camera is facilitated by having
an interface via a Gateway 2000 P4D-66 PC (North Sioux
City, South Dakota) and software (Image-1 version 4.0) from
Universal Imaging Corporation (West Chester, Pennsylva-
nia). The instrument was calibrated with the heip of a ruler
prior to use. A series of measurements along faces of the
crystals were made to determine their respective dimensions
and an average length, breadth and height was used in each
experiment.

Computer Programs

The third degree equations in u were solved by using
two independent mathematical programs viz., Mathematica
(version 2.2 for Macintosh) and Student MATLAB (DOS
version). Modeling and statistical treatment of the acquired
data was accomplished using the statistical program Scien-
tist Micromath Scientific Software, Salt Lake City, Utah).

RESULTS AND DISCUSSION

In order to determine the shape factor I" of a single
crystal, as a function of time, the fraction undissolved was
calculated from the amount dissolved (Fig. 2). The transfor-
mation of actual time t to reduced time u is a convenient way
to normalize all dissolution runs. There is a one to one cor-
respondence between u and t. There was no ambiguity in
selection of the ‘“‘correct’ root of Eq. 22 because in all the
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Fig. 2. Dissolution curve for potassium dichromate crystal no. 2 in
0.1N H,SO, at 25°C and 50 rpm stirrer speed.

cases that were studied, two of the three roots were either
imaginary or were greater than unity.

The linearity in the plot shown in Fig. 3 for crystal no.
2 with dimensions 1,=1.120 cm, b,=0.518 cm, and
hy=0.299 cm confirms the validity of Eq. 21. Knowing the
saturation solubility at 25°C (0.1397 g/ml), density at 25°C
(2.676 g/ml), and h, one could estimate the intrinsic dissolu-
tion rate constant from the slope of the graph shown in Fig.
3. For this crystal it was found to be 2.14 x 1073 cm/sec. A
similar study was done on four other crystals of potassium
dichromate and all the u vs t plots were linear. The intrinsic
dissolution rate constants so obtained are given in Table I.
The mean of these values with 95% confidence limits was
found to be 2.74+0.62 x 10~3 cm/sec.

The shape factor at each time point was calculated for
this crystal via Eq. 23. A plot of I" versus u is shown in Fig.
4. It must be mentioned that the nature of this plot is in
concordance with the one reported by Lai and Carstensen
(4) for the cylindrical tablets. One salient feature of this plot
is that in the initial phases of dissolution the shape factor

= - 1.8229-2 + 7.5080e-4x

RA2 =0.998

Reduced time

0.0 i A 1 PR S S |

0 500 1000 1500

Time (sec)
Fig. 3. Reduced time versus actual time data for crystal no. 2.
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Table I. Intrinsic Dissolution Rate Constants for the Five Potassiun.
Dichromate Crystals

k x 10°
Crystalno. hpoecm  g/p =byh, c¢; X 10°sec™!  cm/sec
1 0.400 1.60 9.76 3.74
2 0.299 1.73 7.47 2.14
3 0.373 1.18 7.31 2.61
4 0.173 3.09 13.61 2.25
b 0.304 1.68 10.22 2.97

increases only marginally, and after about u = 0.5 there is a
significant change in I'. Physically this implies that as the
particle dissolves, the volume of the crystal decreases at a
faster rate than the surface area. Hence at relatively smaller
particle sizes, surface area is the dominant factor.

Empirically the following equation describes the data in
Fig. 4:

C2

PrTR— 29

F'=¢ +

where c,, c,, and u* are parameters that can be determined
from a nonlinear regression fit to the data. To be consistent
with the curve in Fig. 4 the value of u* must be very close to
unity. For an isometric particle such as a sphere or a cube or
a right circular cylinder one would expect c, to be zero so
that the shape factor would be independent of u, i.e. time.

In an attempt to fit the shape factor data other functions
were used viz., polynomials, logarithmic function in u, ex-
ponential function in u, and a combination of polynomial and
logarithmic function in u. None of them gave good fits. The
nature of the curve in Fig. 4 suggests an inverse functionality
in (1-u). The goodness of fit of all the functions mentioned
here was determined on the basis of a statistical parameter
called the Model Selection Criterion (MSC). This is a part of
the data fitting statistical program Scientist™. It is given by
the following expression:
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5 ] b
01— T T T T T T —
0.0 0.2 0.4 0.6 0.8 1.0

Reduced time
Fig. 4. Shape factor versus reduced time for crystal no. 2. The open
circles represent the experimental data points and the curve is a
least square fit to the data.
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where w; are the weights applied to each point in a set of
data, n is the number of points, and p is the number of
parameters in the model equation. Y represents the depen-
dent variable and ‘‘obs’” and ‘‘cal’’ indicate the observed
and calculated values for that variable. This parameter is
particularly useful in comparing two different models with
different number of parameters. Larger the value of MSC
greater is the information content of the model, and better is
the fit. It was found that this value was largest for Eq. 24 as
the model as compared to other functions used.

The data in Fig. 4 were least square fitted using non-
linear regression with the following outcome: c,=6.021,
c,=0.930, and u*=1.012, R2=0.999. Dissolution studies
were carried out on four other crystals of potassium dichro-
mate with different dimensions. The pertinent data and pa-
rameters are given in table II. In all the cases the value of u*
was close to unity. Substituting u=0 in Eq. 24 yields the
value of initial shape factor (I'y). For all the five crystals
(within experimental errors) these values were in good
agreement with the ones calculated from their initial dimen-
sions (columns 10 and 11 in table II).

Fig. S illustrates the effect of the degree of non-
isometricity on the extent of change in the shape factor dur-
ing dissolution of the crystals. For convenience the ratio q/p
which is equal to byh, can be used to quantify the degree of
non-isometricity of a crystal. Accordingly crystal no. 4 ex-
hibits the highest degree of non-isometricity. It is also the
one which experiences the earliest and most significant
change in the shape factor. The observation is particularly
relevant to extreme elongated shapes like needles and flakes.
The nature of the curves in Fig. § is in agreement with those
obtained by graphical integration for non-isometric cylin-
ders, as reported by Lai and Carstensen (4).

Derivation of the Modified Cube Root Equation
for Dissolution

Since

Dali and Carstensen

40

Shape tactor

Reduced time

Fig. 5. Shape factor versus reduced times for crystals 1-5. Crystal
no. 1: squares (q/p=1.60); crystal no. 2: circles (q/p=1.73); crystal
no.3:diamonds (q/p = 1.18); crystal no. 4: triangles (q¢/p=3.09); crys-
tal no. 5: + (g/p=1.68).

2kS
= a}; t = cst (26)
it follows from Eq. 24 that
C2
P=e+ oos @7
Eq. 2 may now be written as
d 3
m c m
—_— = = + — —_
dt kS [cl W* - c;t)] (p) @8
Eq. 28 may be integrated to give:
dm kS c
m S0 B Y2
mm?® 23 Io {c‘ T - cm} a @
or
mg'® — miB = —> |yt — “2mn ur — ot (30)
3 2/3 c3 u*
or

Table II. Initial Dimensions of Five Different Crystals of Potassium Dichromate, Their Respective Shape Ratios, and Parameters for the
Shape Factor of the Dissolving Crystal

Ly b ho | Ty
Crystal no. cm? cm? cm? p q ct ct u*® from fit actual
1 0.902 0.642 0.400 1.406 2.252 5.753 0.578 1.008 6.33 6.34
2 1.120 0.518 0.299 2.161 3.738 6.021 0.930 1.012 6.94 6.88
3 0.876 0.441 0.373 1.987 2.306 6.072 0.394 1.008 6.46 6.39
4 0.712 0.535 0.173 1.330 4.117 5.915 1.549 1.016 7.44 7.31
5 0.912 0.511 0.304 1.784 2.999 5.909 0.756 1.009 6.65 6.61

2 Determined by image analysis technique with prior calibration.

® Obtained from non-linear regression fit of shape factor as a function of reduced time.

¢ Calculated from c;, c,, and v*.
4 Calculated from 1,, by, and h,.
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C]ks
B =% (32)
3
3p
1
*h
C
D= 2—‘;—" (33)
and
_ %S »
c3 = ohy 34

Knowing the values of the constants p, S, k and the param-
eters ¢y, C,, ¢5, and u* the cube root differences can now be
calculated from Eq. 30. These would be the predicted values
from our model. These values for crystal no. 2 are repre-
sented by open squares in Fig.6 and the open circles repre-
sent the actual experimental values for the same crystal. For
an isometric particle ¢, and hence D would be zero. In such
cases Eq. 31 reduces to the usual cube root law. Both these
instances are depicted in Fig.6. The straight line is the pre-
diction from the Hixson Crowell cube root law (D =0). It can
be seen that the model equation derived here explains the
upward curvature in the plot. The differences in the ob-
served values and the ones calculated from the model are
less than those from the predictions of Hixson Crowell cube
root law. Similar behavior was exhibited for all the other
crystals, in that an upward curvature was seen in the cube
root law plots and the predicted values were always higher
than the predicted values.

One could speculate several reasons for the observed
differences in the experimental values and the predicted val-
ues from the model. Firstly, potassium dichromate belongs
to a triclinic pinacoidal crystal system. None of the three

0.8
From parallelepiped model
0.6
=
he]
8 047}
=
[
L
=
@ 02F Predicted from
Hixson Crowell
cube root law
0.0 * . *
0 500 1000 1500
Time (sec)

Fig. 6. Cube root difference values plotted against time for crystal
no. 2. Circles represent experimental data points, squares are the
values calculated from our model equation, and the straight line
represents predictions of the Hixson Crowell cube root law.
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angles between the three defining axes are equal to 90°. Sec-
ondly, by visual inspection during dissolution runs it was
observed that towards the end of the dissolution event the
dissolving crystals assumed irregular shapes thereby making
it more difficult to approximate the model geometry. Obvi-
ously this ties in with non-isotropicity. There are active sites
on the crystal which may be unevenly placed leading to pref-
erential dissolution from a corner or an edge of the crystal.

The work done by Lai and Carstensen (4) dealt with
oxalic acid tablets and the simulation model for a real par-
ticle was a cylinder. Their conclusions regarding effect of
non-isometricity on the change in shape factor was based on
results obtained from graphical integration. Only two lengths
are necessary to define the shape of a cylinder, namely
height and the base radius. Although this, to some extent,
mimics the overall shape of a needle or a platelet, it lacks the
third dimension. Hence an extension of their work was
deemed to be in order.

All the same, the model underlines the importance of
shape factor and hence surface area of the dissolving particle
in the manifestation of its dissolution behavior. It can be
concluded that amongst other variables, the shape factor of
real particles is critical in determining their dissolution be-
havior. This study is particularly relevant to shapes like nee-
dles and platelets because they are characterized by high
degrees of non-isometricity. This treatise will be extended to
multiparticulate systems by considering separate sieve frac-
tions of crystalline substances (17) in a study that is pres-
ently underway.

SYMBOLS

A = surface area of dissolving solid (cm?®, C = con-
centration (mg/ml) at time t, M = mass of monodisperse
powder not dissolved (mg or g) at time t, M, = Initial mass
of monodisperse powder (mg or g), m = mass of a single
particle remaining at time t, my = initial mass of a single
crystal (mg or g). k = intrinsic dissolution rate constant
(cm/sec), S = saturation solubility (g/ml solvent), t = time
(sec), I’ = shape factor, p = true density of the solid (g/cm?),
l, = initial length of the crystal (cm), b, = initial breadth of
the crystal (cm), h, = initial height of the crystal (cm), | =
length of the dissolving crystal at any time t (cm), b =
breadth of the dissolving crystal at any time t (cm), h =
height of the dissolving crystal at any time t (cm), p,q =
shape ratios for a crystal
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